کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
841388 | 908508 | 2010 | 5 صفحه PDF | دانلود رایگان |

A mapping is called isotone if it is monotone increasing with respect to the order induced by a pointed closed convex cone. Finding the pointed closed convex generating cones for which the projection mapping onto the cone is isotone is a difficult problem which was analyzed in Isac and Németh (1986, 1990, 1992) [1], [2], [3], [4] and [5]. Such cones are called isotone projection cones. In particular it was shown that any isotone projection cone is latticial (Isac (1990) [2]). This problem is extended by replacing the projection mapping with continuous retractions onto the cone. By introducing the notion of sharp mappings, it is shown that a pointed closed convex generating cone is latticial if and only if there is a continuous retraction onto the cone whose complement is sharp. Several particular cases are considered and examples are given.
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 73, Issue 2, 15 July 2010, Pages 495–499