کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
841674 908517 2011 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Periodic and homoclinic travelling waves in infinite lattices
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Periodic and homoclinic travelling waves in infinite lattices
چکیده انگلیسی

Consider an infinite chain of particles subjected to a potential ff, where nearest neighbours are connected by nonlinear oscillators. The nonlinear coupling between particles is given by a potential VV. The dynamics of the system is described by the infinite system of second order differential equations q̈j+f′(qj)=V′(qj+1−qj)−V′(qj−qj−1),j∈Z. We investigate the existence of travelling wave solutions. Two kinds of such solutions are studied: periodic and homoclinic ones. On one hand, we prove under some growth conditions on ff and VV, the existence of non-constant periodic solutions of any given period T>0T>0, and speed c>c0c>c0, where the constant c0c0 depends on f″(0)f″(0) and V″(0)V″(0). On the other hand, under very similar conditions, we establish the existence of non-trivial homoclinic solutions, of any given speed c>c0c>c0, emanating from the origin. Moreover, we prove that these homoclinics decay exponentially at infinity. Each homoclinic is obtained as a limit of periodic solutions when the period goes to infinity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 74, Issue 6, 15 March 2011, Pages 2071–2086
نویسندگان
,