کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
841917 1470527 2010 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global bifurcation of periodic solutions in nonlinear evolution problems with periodic forcing
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Global bifurcation of periodic solutions in nonlinear evolution problems with periodic forcing
چکیده انگلیسی

This paper discusses the global bifurcation of 2π2π-periodic solutions of ut=P(λ,x,∂)u+f(λ,t,u)ut=P(λ,x,∂)u+f(λ,t,u) with a homogeneous Dirichlet boundary condition, where P(λ,x,∂)P(λ,x,∂) is linear elliptic and the nonlinearity ff is 2π2π-periodic in tt.The main differences from existing theories devoted to this type of problem can roughly be summarized as follows: (i) the bifurcation analysis makes no use of evolution operators or related concepts (Poincaré maps, Floquet multipliers, etc.); (ii) the bifurcation/nonbifurcation points are characterized through an associated stationary problem; (iii) the functional setting allows for nonlinearities ff exhibiting time discontinuities.Among other things, the results include various partial generalizations of the “bifurcation from the principal eigenvalue” theorem, which, unlike the classical version, do not require linear parameter dependence.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 72, Issues 3–4, 1 February 2010, Pages 1709–1725
نویسندگان
,