کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
842027 908524 2011 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Decay of energy for second-order boundary hemivariational inequalities with coercive damping
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Decay of energy for second-order boundary hemivariational inequalities with coercive damping
چکیده انگلیسی

In this article we consider the asymptotic behavior of solutions to second-order evolution inclusions with the boundary multivalued term u″(t)+A(t,u′(t))+Bu(t)+γ̄∗∂J(t,γ̄u′(t))∋0 and u″(t)+A(t,u′(t))+Bu(t)+γ̄∗∂J(t,γ̄u(t))∋0, where AA is a (possibly) nonlinear coercive and pseudomonotone operator, BB is linear, continuous, symmetric and coercive, γ̄ is the trace operator and JJ is a locally Lipschitz integral functional with ∂∂ denoting the Clarke generalized gradient taken with respect to the second variable. For both cases we provide conditions under which the appropriately defined energy decays exponentially to zero as time tends to infinity. We discuss assumptions and provide examples of multivalued laws that satisfy them.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 74, Issue 4, 15 February 2011, Pages 1164–1181
نویسندگان
,