کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
842077 908525 2010 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Best constant in critical Sobolev inequalities of second-order in the presence of symmetries
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Best constant in critical Sobolev inequalities of second-order in the presence of symmetries
چکیده انگلیسی

Let (M,g)(M,g) be a smooth compact Riemannian manifold. We first give the value of the best first constant for the critical embedding H2(M)↪L2♯(M)H2(M)↪L2♯(M) for second-order Sobolev spaces of functions invariant by some subgroup of the isometry group of (M,g)(M,g). We also prove that we can take ϵ=0ϵ=0 in the corresponding inequality under some geometric assumptions. As an application we give a sufficient condition for the existence of a smooth positive symmetric solution to a critical equation with a symmetric Paneitz–Branson-type operator. A sufficient condition for the existence of a nodal solution to such an equation is also derived. We eventually prove a multiplicity result for such an equation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 72, Issue 2, 15 January 2010, Pages 689–703
نویسندگان
,