کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
842129 908526 2010 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rate of decay of solutions of the wave equation with arbitrary localized nonlinear damping
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Rate of decay of solutions of the wave equation with arbitrary localized nonlinear damping
چکیده انگلیسی

We study the rate of decay of solutions of the wave equation with localized nonlinear damping without any growth restriction and without any assumption on the dynamics. Providing regular initial data, the asymptotic decay rates of the energy functional are obtained by solving nonlinear ODE. Moreover, we give explicit uniform decay rates of the energy. More precisely, we find that the energy decays uniformly at last, as fast as 1/(ln(t+2))2−δ,∀δ>01/(ln(t+2))2−δ,∀δ>0, when the damping has a polynomial growth or sublinear, and for an exponential damping at the origin the energy decays at last, as fast as 1/(ln(ln(t+e2)))2−δ,∀δ>01/(ln(ln(t+e2)))2−δ,∀δ>0.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 73, Issue 4, 15 August 2010, Pages 987–1003
نویسندگان
,