کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
842285 908528 2009 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Heat kernel expansions in vector bundles
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Heat kernel expansions in vector bundles
چکیده انگلیسی

Let MM be a complete connected smooth (compact) Riemannian manifold of dimension nn. Let Π:V→MΠ:V→M be a smooth vector bundle over MM. Let L=12Δ+b be a second order differential operator on MM, where ΔΔ is a Laplace-Type operator on the sections of the vector bundle VV and bb a smooth vector field on MM. Let kt(−,−)kt(−,−) be the heat kernel of VV relative to LL. In this paper we will derive an exact and an asymptotic expansion for kt(x,y0)kt(x,y0) where y0y0 is the center of normal coordinates defined on MM, xx is a point in the normal neighborhood centered at y0y0. The leading coefficients of the expansion are then computed at x=y0x=y0 in terms of the linear and quadratic Riemannian curvature invariants of the Riemannian manifold MM, of the vector bundle VV, and of the vector bundle section ϕϕ and its derivatives.We end by comparing our results with those of previous authors (I. Avramidi, P. Gilkey, and McKean–Singer).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 71, Issue 12, 15 December 2009, Pages e445–e473
نویسندگان
,