کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
842328 908529 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semilocal convergence of a family of third-order methods in Banach spaces under Hölder continuous second derivative
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Semilocal convergence of a family of third-order methods in Banach spaces under Hölder continuous second derivative
چکیده انگلیسی

In this paper, the semilocal convergence of a family of multipoint third-order methods used for solving F(x)=0F(x)=0 in Banach spaces is established. It is done by using recurrence relations under the assumption that the second Fréchet derivative of FF satisfies Hölder continuity condition. Based on two parameters depending upon FF, a new family of recurrence relations is defined. Using these recurrence relations, an existence–uniqueness theorem is established to prove that the RR-order convergence of the method is (2+p)(2+p). A priori error bounds for the method are also derived. Two numerical examples are worked out to demonstrate the efficacy of our approach.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 69, Issue 11, 1 December 2008, Pages 4163–4173
نویسندگان
, ,