کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
842328 | 908529 | 2008 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Semilocal convergence of a family of third-order methods in Banach spaces under Hölder continuous second derivative
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, the semilocal convergence of a family of multipoint third-order methods used for solving F(x)=0F(x)=0 in Banach spaces is established. It is done by using recurrence relations under the assumption that the second Fréchet derivative of FF satisfies Hölder continuity condition. Based on two parameters depending upon FF, a new family of recurrence relations is defined. Using these recurrence relations, an existence–uniqueness theorem is established to prove that the RR-order convergence of the method is (2+p)(2+p). A priori error bounds for the method are also derived. Two numerical examples are worked out to demonstrate the efficacy of our approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 69, Issue 11, 1 December 2008, Pages 4163–4173
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 69, Issue 11, 1 December 2008, Pages 4163–4173
نویسندگان
P.K. Parida, D.K. Gupta,