کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
842336 908530 2010 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modular metric spaces, I: Basic concepts
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Modular metric spaces, I: Basic concepts
چکیده انگلیسی

The notion of a modular is introduced as follows. A (metric) modular   on a set XX is a function w:(0,∞)×X×X→[0,∞]w:(0,∞)×X×X→[0,∞] satisfying, for all x,y,z∈Xx,y,z∈X, the following three properties: x=yx=y if and only if w(λ,x,y)=0w(λ,x,y)=0 for all λ>0λ>0; w(λ,x,y)=w(λ,y,x)w(λ,x,y)=w(λ,y,x) for all λ>0λ>0; w(λ+μ,x,y)≤w(λ,x,z)+w(μ,y,z)w(λ+μ,x,y)≤w(λ,x,z)+w(μ,y,z) for all λ,μ>0λ,μ>0. We show that, given x0∈Xx0∈X, the set Xw={x∈X:limλ→∞w(λ,x,x0)=0}Xw={x∈X:limλ→∞w(λ,x,x0)=0} is a metric space with metric dw∘(x,y)=inf{λ>0:w(λ,x,y)≤λ}, called a modular space  . The modular ww is said to be convex   if (λ,x,y)↦λw(λ,x,y)(λ,x,y)↦λw(λ,x,y) is also a modular on XX. In this case XwXw coincides with the set of all x∈Xx∈X such that w(λ,x,x0)<∞w(λ,x,x0)<∞ for some λ=λ(x)>0λ=λ(x)>0 and is metrizable by dw∗(x,y)=inf{λ>0:w(λ,x,y)≤1}. Moreover, if dw∘(x,y)<1 or dw∗(x,y)<1, then (dw∘(x,y))2≤dw∗(x,y)≤dw∘(x,y); otherwise, the reverse inequalities hold. We develop the theory of metric spaces, generated by modulars, and extend the results by H. Nakano, J. Musielak, W. Orlicz, Ph. Turpin and others for modulars on linear spaces.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 72, Issue 1, 1 January 2010, Pages 1–14
نویسندگان
,