کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
842758 1470528 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The number of limit cycles of a quintic polynomial system with center
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
The number of limit cycles of a quintic polynomial system with center
چکیده انگلیسی

In this paper we study the global bifurcation of limit cycles for the system ẋ=y(1+x4),ẏ=−x(1+x4)+εy2m−1Σj=0lajxj for εε sufficiently small, where l=2n+2or2n+3, m,nm,n are arbitrary positive integers and a0,a1,…,ala0,a1,…,al are real. We have used Argument principle to give estimate of an upper bound for the number of limit cycles that can bifurcate from period annulus of this system for ε=0ε=0. Furthermore we have shown that there exist a set of constant a0,a1,…,ala0,a1,…,al where the related abelian integral of this system has at least 3m+n−23m+n−2 isolated zeros. We have, in order to prove our result applied the Argument Principle to a complex extension of the Abelian integral.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 71, Issues 7–8, 1–15 October 2009, Pages 3008–3017
نویسندگان
, , ,