کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
842816 | 908539 | 2010 | 9 صفحه PDF | دانلود رایگان |

The purpose of this note is twofold: to introduce the notion of polynomial contraction for a linear nonautonomous dynamics with discrete time, and to show that it persists under sufficiently small linear and nonlinear perturbations. The notion of polynomial contraction mimics the notion of exponential contraction, but with the exponential decay replaced by a polynomial decay. We show that this behavior is exhibited by a large class of dynamics, by giving necessary conditions in terms of “polynomial” Lyapunov exponents. Finally, we establish the persistence of the asymptotic stability of a polynomial contraction under sufficiently small linear and nonlinear perturbations. We also consider the case of nonuniform polynomial contractions, for which the Lyapunov stability is not uniform.
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 73, Issue 1, 1 July 2010, Pages 202–210