کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
843155 908548 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Relaxed viscosity approximation methods for fixed point problems and variational inequality problems
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Relaxed viscosity approximation methods for fixed point problems and variational inequality problems
چکیده انگلیسی

Let XX be a real strictly convex and reflexive Banach space with a uniformly Gâteaux differentiable norm and CC be a nonempty closed convex subset of XX. Let {Tn}n=1∞ be a sequence of nonexpansive self-mappings on CC such that the common fixed point set F≔⋂n=1∞F(Tn)≠0̸ and f:C→Cf:C→C be a given contractive mapping, and {λn}{λn} be a sequence of nonnegative numbers in [0,1][0,1]. Consider the following relaxed viscosity approximation method {xn+1=(1−αn−βn)xn+αnf(yn)+βnWnyn,yn=(1−γn)xn+γnWnxn,n≥1 where WnWn is the WW-mapping generated by Tn,Tn−1,…,T1Tn,Tn−1,…,T1 and λn,λn−1,…,λ1λn,λn−1,…,λ1 for each n≥1n≥1. It is proven that under very mild conditions on the parameters, the sequence {xn}{xn} of approximate solutions generated by the proposed method converges strongly to some p∈Fp∈F where pp is the unique solution in FF to the following variational inequality: 〈(I−f)p,J(p−x∗)〉≤0,∀x∗∈F.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 69, Issue 10, 15 November 2008, Pages 3299–3309
نویسندگان
, ,