کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
843166 | 908548 | 2008 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Existence of ergodic retractions for semigroups in Banach spaces
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this work, we prove among other results that if S is a right amenable semigroup and Ï={Ts:sâS} is a (quasi-)nonexpansive semigroup on a closed, convex subset C in a strictly convex reflexive Banach space E such that the set F(Ï) of common fixed points of Ï is nonempty, then there exists a (quasi-)nonexpansive retraction P from C onto F(Ï) such that PTt=TtP=P for each tâS and every closed convex Ï-invariant subset of C is also P-invariant. Moreover, if the mappings are also affine then Tμ [G. Rode, An ergodic theorem for semigroups of nonexpansive mappings in a Hilbert space, J. Math. Anal. Appl. 85 (1982) 172-178. [12]] is a quasi-contractive affine retraction from C onto F(Ï), such that TμTt=TtTμ=Tμ for each tâS, and Tμxâco¯{Ttx:tâS} for each xâC; and if R is an arbitrary retraction from C onto F(Ï) such that Rxâco¯{Ttx:tâS} for each xâC, then R=Tμ. It is shown that if the Tt's are F(Ï)-quasi-contractive then the results hold without the strict convexity condition on E.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 69, Issue 10, 15 November 2008, Pages 3417-3422
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 69, Issue 10, 15 November 2008, Pages 3417-3422
نویسندگان
Shahram Saeidi,