کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
843166 908548 2008 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Existence of ergodic retractions for semigroups in Banach spaces
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Existence of ergodic retractions for semigroups in Banach spaces
چکیده انگلیسی
In this work, we prove among other results that if S is a right amenable semigroup and φ={Ts:s∈S} is a (quasi-)nonexpansive semigroup on a closed, convex subset C in a strictly convex reflexive Banach space E such that the set F(φ) of common fixed points of φ is nonempty, then there exists a (quasi-)nonexpansive retraction P from C onto F(φ) such that PTt=TtP=P for each t∈S and every closed convex φ-invariant subset of C is also P-invariant. Moreover, if the mappings are also affine then Tμ [G. Rode, An ergodic theorem for semigroups of nonexpansive mappings in a Hilbert space, J. Math. Anal. Appl. 85 (1982) 172-178. [12]] is a quasi-contractive affine retraction from C onto F(φ), such that TμTt=TtTμ=Tμ for each t∈S, and Tμx∈co¯{Ttx:t∈S} for each x∈C; and if R is an arbitrary retraction from C onto F(φ) such that Rx∈co¯{Ttx:t∈S} for each x∈C, then R=Tμ. It is shown that if the Tt's are F(φ)-quasi-contractive then the results hold without the strict convexity condition on E.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 69, Issue 10, 15 November 2008, Pages 3417-3422
نویسندگان
,