کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
843242 908550 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Strong convergence theorems for finitely many nonexpansive mappings
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Strong convergence theorems for finitely many nonexpansive mappings
چکیده انگلیسی

Under the assumption that EE is a reflexive Banach space whose norm is uniformly Gêteaux differentiable and which has a weakly continuous duality mapping JφJφ with gauge function φφ, Ceng–Cubiotti–Yao [Strong convergence theorems for finitely many nonexpansive mappings and applications, Nonlinear Analysis 67 (2007) 1464–1473] introduced a new iterative scheme for a finite commuting family of nonexpansive mappings, and proved strong convergence theorems about this iteration. In this paper, only under the hypothesis that EE is a reflexive Banach space which has a weakly continuous duality mapping JφJφ with gauge function φφ, and several control conditions about the iterative coefficient are removed, we present a short and simple proof of the above theorem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 70, Issue 4, 15 February 2009, Pages 1797–1802
نویسندگان
, ,