کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
843242 | 908550 | 2009 | 6 صفحه PDF | دانلود رایگان |

Under the assumption that EE is a reflexive Banach space whose norm is uniformly Gêteaux differentiable and which has a weakly continuous duality mapping JφJφ with gauge function φφ, Ceng–Cubiotti–Yao [Strong convergence theorems for finitely many nonexpansive mappings and applications, Nonlinear Analysis 67 (2007) 1464–1473] introduced a new iterative scheme for a finite commuting family of nonexpansive mappings, and proved strong convergence theorems about this iteration. In this paper, only under the hypothesis that EE is a reflexive Banach space which has a weakly continuous duality mapping JφJφ with gauge function φφ, and several control conditions about the iterative coefficient are removed, we present a short and simple proof of the above theorem.
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 70, Issue 4, 15 February 2009, Pages 1797–1802