کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
843261 1470529 2009 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classical solutions of drift–diffusion equations for semiconductor devices: The two-dimensional case
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Classical solutions of drift–diffusion equations for semiconductor devices: The two-dimensional case
چکیده انگلیسی

We regard drift–diffusion equations for semiconductor devices in Lebesgue spaces. To that end we reformulate the (generalized) van Roosbroeck system as an evolution equation for the potentials to the driving forces of the currents of electrons and holes. This evolution equation falls into a class of quasi-linear parabolic systems which allow unique, local in time solution in certain Lebesgue spaces. In particular, it turns out that the divergence of the electron and hole currents is an integrable function. Hence, Gauss’ theorem applies, and gives the foundation for space discretization of the equations by means of finite volume schemes. Moreover, the strong differentiability of the electron and hole density in time is constitutive for the implicit time discretization scheme. Finite volume discretization of space, and implicit time discretization are accepted custom in engineering and scientific computing. This investigation puts special emphasis on non-smooth spatial domains, mixed boundary conditions, and heterogeneous material compositions, as required in electronic device simulation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 71, Issues 5–6, 1–15 September 2009, Pages 1584–1605
نویسندگان
, , ,