کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
843485 908556 2009 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic stability of rarefaction waves for the generalized KdV–Burgers equation on the half-line
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Asymptotic stability of rarefaction waves for the generalized KdV–Burgers equation on the half-line
چکیده انگلیسی

We investigate the asymptotic behavior of solutions of the initial boundary value problem for the generalized KdV–Burgers equation ut+f(u)x=uxx−uxxxut+f(u)x=uxx−uxxx on the half-line with the boundary condition u(0,t)=u−u(0,t)=u−. The corresponding Cauchy problems of the behaviors of weak and strong rarefaction waves have respectively been studied by Wang and Zhu [Z.A. Wang, C.J. Zhu, Stability of the rarefaction wave for the generalized KdV–Burgers equation, Acta Math. Sci. 22B (3) (2002) 309–328] and Duan and Zhao [R. Duan, H.J. Zhao, Global stability of strong rarefaction waves for the generalized KdV–Burgers equation, Nonlinear Anal. TMA 66 (2007) 1100–1117]. In the present problem, on the basis of the Dirichlet boundary conditions, the asymptotic states are divided into five cases dependent on the signs of the characteristic speeds f′(u±)f′(u±). In the cases of 0≤f′(u−)

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 70, Issue 1, 1 January 2009, Pages 372–384
نویسندگان
, ,