کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8438073 | 1401524 | 2017 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Prognostic and Predictive Value of p21-activated Kinase 6 Associated Support Vector Machine Classifier in Gastric Cancer Treated by 5-fluorouracil/Oxaliplatin Chemotherapy
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
تحقیقات سرطان
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
To determine whether p21-activated Kinase (PAK) 6 is a prognostic and predictive marker in gastric cancer (GC) and to construct a classifier that can identify a subset of patients who are highly sensitive to 5-fluorouracil/oxaliplatin chemotherapy. We retrospectively analyzed the expression levels of PAK6, cyclooxygenase 2, p21WAF1, Ki-67, excision repair cross-complementing gene 1, and thymidylate synthase in 242 paraffin-embedded GC specimens of the training cohort by immunohistochemistry. Then, we used support vector machine (SVM)-based methods to develop a predictive classifier for chemotherapy (chemotherapy score - CS-SVM classifier). Further validation was performed in an independent cohort of 279 patients. High PAK6 expression was associated with poor prognosis and increased chemoresistance to 5-FU/oxaliplatin chemotherapy. The CS-SVM classifier distinguished patients with stage II and III GC into low- and high-CS-SVM groups, with significant differences in the 5-year disease-free survival (DFS) and overall survival (OS) in chemotherapy patients. Moreover, chemotherapy significantly prolonged the DFS and OS of the high CS-SVM patients in the training and validation cohorts. In conclusion, PAK6 was an independent prognostic factor and increased chemoresistance. The CS-SVM classifier distinguished a subgroup of stage II and III patients who would highly benefit from chemotherapy, thus facilitating patient counseling and individualizing the management.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: EBioMedicine - Volume 22, August 2017, Pages 78-88
Journal: EBioMedicine - Volume 22, August 2017, Pages 78-88
نویسندگان
Yuming Jiang, Wei Liu, Tuanjie Li, Yanfeng Hu, Sile Chen, Sujuan Xi, Yajia Wen, Lei Huang, Liying Zhao, Cuicui Xiao, Xiaohui Huang, Zhen Han, Hao Liu, Xiaolong Qi, Yang Yang, Jiang Yu, Shirong Cai, Guoxin Li,