کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
843867 908568 2008 38 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Applications of equivariant degree for gradient maps to symmetric Newtonian systems
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Applications of equivariant degree for gradient maps to symmetric Newtonian systems
چکیده انگلیسی
We consider G=Γ×S1 with Γ being a finite group, for which the complete Euler ring structure in U(G) is described. The multiplication tables for Γ=D6, S4 and A5 are provided in the Appendix. The equivariant degree for G-orthogonal maps is constructed using the primary equivariant degree with one free parameter. We show that the G-orthogonal degree extends the degree for G-gradient maps (in the case of G=Γ×S1) introduced by Gȩba in [K. Gȩba, W. Krawcewicz, J. Wu, An equivariant degree with applications to symmetric bifurcation problems I: Construction of the degree, Bull. London. Math. Soc. 69 (1994) 377-398]. The computational results obtained are applied to a Γ-symmetric autonomous Newtonian system for which we study the existence of 2π-periodic solutions. For some concrete cases, we present the symmetric classification of the solution set for the systems considered.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 68, Issue 6, 15 March 2008, Pages 1479-1516
نویسندگان
, ,