کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
844007 | 908572 | 2008 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Behavior near hyperbolic stationary solutions for partial functional differential equations with infinite delay
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The aim of this work is to investigate the asymptotic behavior of solutions near hyperbolic stationary solutions for partial functional differential equations with infinite delay. We suppose that the linear part satisfies the Hille–Yosida condition on a Banach space and it is not necessarily densely defined. Firstly, we establish a new variation of constants formula for the nonhomogeneous linear equations. Secondly, we use this formula and the spectral decomposition of the phase space to show the existence of stable and unstable manifolds. The estimations of solutions on these manifolds are obtained. For illustration, we propose to study the stability of stationary solutions for the Lotka–Volterra model with diffusion.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 68, Issue 8, 15 April 2008, Pages 2280–2302
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 68, Issue 8, 15 April 2008, Pages 2280–2302
نویسندگان
Mostafa Adimy, Khalil Ezzinbi, Aziz Ouhinou,