کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
844092 908575 2008 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The well posedness of the dissipative Korteweg-de Vries equations with low regularity data
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
The well posedness of the dissipative Korteweg-de Vries equations with low regularity data
چکیده انگلیسی
We study the Cauchy problem of a dissipative version of the KdV equation with rough initial data. By working in a Bourgain type space we prove the local and global well posedness results for Sobolev spaces of negative order, and the order number is lower than the well known value −34. In some sense this paper is intended to show how the Bourgain type space is applicable to the study of semilinear equations with a linear part which contain both dissipative and dispersive terms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 69, Issue 1, 1 July 2008, Pages 171-188
نویسندگان
, ,