کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
844236 908581 2008 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bifurcations of limit cycles from quintic Hamiltonian systems with an eye-figure loop
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Bifurcations of limit cycles from quintic Hamiltonian systems with an eye-figure loop
چکیده انگلیسی

In this paper we consider Lieńard equations of the form {ẋ=y,ẏ=−(x−2x3+x5)−ε(α+βx2+γx4)y, where 0<|ε|≪10<|ε|≪1, (α,β,γ)∈Λ⊂R3(α,β,γ)∈Λ⊂R3 and ΛΛ is bounded. We prove that the least upper bound for the number of zeros of the related Abelian integrals I(h)=∮Γh(α+βx2+γx4)ydx is 2 (taking into account their multiplicities) for h∈(0,1/6)h∈(0,1/6) and this upper bound is a sharp one. This implies that the number of limit cycles bifurcated from periodic orbits in the vicinity of the center of the unperturbed system for ε=0ε=0 inside an eye-figure loop is less than or equal to 2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 68, Issue 10, 15 May 2008, Pages 2957–2976
نویسندگان
, ,