کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
844243 908581 2008 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-bump solutions for a strongly indefinite semilinear Schrödinger equation without symmetry or convexity assumptions
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Multi-bump solutions for a strongly indefinite semilinear Schrödinger equation without symmetry or convexity assumptions
چکیده انگلیسی

In this paper, we study the following semilinear Schrödinger equation with periodic coefficient: −Δu+V(x)u=f(x,u),u∈H1(RN). The functional corresponding to this equation possesses strongly indefinite structure. The nonlinear term f(x,t)f(x,t) satisfies some superlinear growth conditions and need not be odd or increasing in tt. Using a new variational reduction method and a generalized Morse theory, we proved that this equation has infinitely many geometrically different solutions. Furthermore, if the solutions of this equation under some energy level are isolated, then we can show that this equation has infinitely many mm-bump solutions for any positive integer m≥2m≥2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 68, Issue 10, 15 May 2008, Pages 3067–3102
نویسندگان
,