کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
844344 908586 2007 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Periodic homogenization of monotone multivalued operators
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Periodic homogenization of monotone multivalued operators
چکیده انگلیسی

Using the unfolding method of Cioranescu, Damlamian and Griso [D. Cioranescu, A. Damlamian, G. Griso, Periodic unfolding and homogenization, C. R. Acad. Sci. Paris Math. 335 (1) (2002) 99–104], we study the homogenization for equations of the form −divdε=f, with (∇uε(x),dε(x))∈Aε(x)(∇uε(x),dε(x))∈Aε(x) and where AεAε is a function whose values are maximal monotone graphs. Under appropriate growth and coercivity assumptions, if the sequence of unfolded maximal monotone graphs (Tε(Aε)(x,y))(Tε(Aε)(x,y)) converges in the graphical sense to a maximal monotone graph B(x,y)B(x,y) for almost every (x,y)∈Ω×Y(x,y)∈Ω×Y, as ε→0ε→0, then (uε,dε)(uε,dε) converges weakly in a suitable Sobolev space to a solution (u0,d0)(u0,d0) of the problem −divd0=f, with (∇u0(x),d0(x))∈A(x)(∇u0(x),d0(x))∈A(x) and AA satisfies the same assumptions as AεAε. This result includes the case where Aε(x)Aε(x) is a monotone continuous function for almost every x∈Ωx∈Ω.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 67, Issue 12, 15 December 2007, Pages 3217–3239
نویسندگان
, , ,