کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
844487 908595 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Path convergence, approximation of fixed points and variational solutions of Lipschitz pseudocontractions in Banach spaces
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Path convergence, approximation of fixed points and variational solutions of Lipschitz pseudocontractions in Banach spaces
چکیده انگلیسی

Let EE be a reflexive Banach space with a uniformly Gâteaux differentiable norm, let KK be a nonempty closed convex subset of EE, and let T:K⟶ET:K⟶E be a continuous pseudocontraction which satisfies the weakly inward condition. For f:K⟶Kf:K⟶K any contraction map on KK, and every nonempty closed convex and bounded subset of KK having the fixed point property for nonexpansive self-mappings, it is shown that the path x→xt,t∈[0,1)x→xt,t∈[0,1), in KK, defined by xt=tTxt+(1−t)f(xt)xt=tTxt+(1−t)f(xt) is continuous and strongly converges to the fixed point of TT, which is the unique solution of some co-variational inequality. If, in particular, TT is a Lipschitz pseudocontractive self-mapping of KK, it is also shown, under appropriate conditions on the sequences of real numbers {αn},{μn}{αn},{μn}, that the iteration process: z1∈Kz1∈K, zn+1=μn(αnTzn+(1−αn)zn)+(1−μn)f(zn),n∈Nzn+1=μn(αnTzn+(1−αn)zn)+(1−μn)f(zn),n∈N, strongly converges to the fixed point of TT, which is the unique solution of the same co-variational inequality. Our results propose viscosity approximation methods for Lipschitz pseudocontractions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 67, Issue 8, 15 October 2007, Pages 2403–2414
نویسندگان
,