کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
844550 | 908598 | 2007 | 24 صفحه PDF | دانلود رایگان |

In this paper, we study the global existence and the asymptotic behavior of the solutions to the Cauchy problem for the following nonlinear evolution equations with ellipticity and dissipative effects equation(E){ψt=−(1−α)ψ−θx+αψxx,θt=−(1−α)θ+νψx+(ψθ)x+αθxx, with initial data equation(I)(ψ,θ)(x,0)=(ψ0(x),θ0(x))→(ψ±,θ±)as x→±∞, where αα and νν are positive constants such that α<1α<1, ν<α(1−α)ν<α(1−α). Through constructing a correct function θˆ(x,t) defined by (2.13) and using the energy method, we show supx∈R(|(ψ,θ)(x,t)|+|(ψx,θx)(x,t)|)→0supx∈R(|(ψ,θ)(x,t)|+|(ψx,θx)(x,t)|)→0 as t→∞t→∞ and the solutions decay with exponential rates. The same problem was studied by Tang and Zhao [S.Q. Tang, H.J. Zhao, Nonlinear stability for dissipative nonlinear evolution equations with ellipticity, J. Math. Anal. Appl. 233 (1999) 336–358] for the case of (ψ±,θ±)=(0,0)(ψ±,θ±)=(0,0).
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 66, Issue 4, 15 February 2007, Pages 890–913