کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
844712 | 908609 | 2006 | 20 صفحه PDF | دانلود رایگان |

In this paper, a computationally efficient controller is proposed for the target control problem when the system is modelled by hybrid automata. The design is carried out in two stages. First, we compute off-line the shortest switching path which has the minimum discrete cost from an initial set to the given target set. Next, a controller is derived which successfully drives the system from any given initial state in the initial set to the target set while minimizing a cost function. The model predictive control (MPC) technique is used when the current state is not within a guard set, otherwise the mixed-integer predictive control (MIPC) technique is employed. An on-line, semi-explicit control algorithm is derived by combining these two techniques. When the system is subject to additive bounded disturbance, it is shown that the proposed on-line control algorithm holds if tighter constraints on the original nominal state and controller are imposed. Finally, as an application of the proposed control procedure, the high-speed and energy-saving control problem of the CPU processing is considered.
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 65, Issue 6, 15 September 2006, Pages 1211–1230