کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
844839 908622 2006 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Elliptic equations and systems with nonstandard growth conditions: Existence, uniqueness and localization properties of solutions
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Elliptic equations and systems with nonstandard growth conditions: Existence, uniqueness and localization properties of solutions
چکیده انگلیسی

We study the Dirichlet problem for the elliptic equations −∑iDi(ai(x,u)|Diu|pi(x)−2Diu)+c(x,u)|u|σ(x)−2u=f(x) in a bounded domain Ω⊂RnΩ⊂Rn, and the class of elliptic systems −∑jDj(aij(x,∇u))=f(i)(x,u),i=1,…,n,u=(u(1),…,u(n)), satisfying the growth condition ∀(x,s,V)∈Ω×Rn2∑ijaij(x,V)⋅Vij≥a0∑ij|Vij|pij(x),a0=const>0. The exponents pij(x)pij(x), pi(x)pi(x), σ(x)σ(x) are known functions. These equations are usually referred to as elliptic equations with nonstandard growth conditions.We prove first the theorems of existence of (bounded) weak solutions and establish sufficient conditions of uniqueness of a weak solution. Our main purpose is the study of the localization properties of weak solutions: we show that the weak solution may identically vanish on a set of nonzero measure in ΩΩ (a dead core) and derive estimates on the size and location of these dead cores in terms of the problem data. The study of the localization properties is performed via the method of local energy estimates.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 65, Issue 4, 15 August 2006, Pages 728–761
نویسندگان
, ,