کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
844864 908623 2006 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Entire solutions of multivalued nonlinear Schrödinger equations in Sobolev spaces with variable exponent
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Entire solutions of multivalued nonlinear Schrödinger equations in Sobolev spaces with variable exponent
چکیده انگلیسی

We establish the existence of an entire solution for a class of stationary Schrödinger equations with subcritical discontinuous nonlinearity and lower bounded potential that blows up at infinity. The abstract framework is related to Lebesgue–Sobolev spaces with variable exponent. The proof is based on the critical point theory in the sense of Clarke and we apply Chang’s version of the Mountain Pass Lemma without the Palais–Smale condition for locally Lipschitz functionals. Our result generalizes in a nonsmooth framework a result of Rabinowitz [P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. (ZAMP) 43 (1992) 270–291] on the existence of ground-state solutions of the nonlinear Schrödinger equation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 65, Issue 7, 1 October 2006, Pages 1414–1424
نویسندگان
,