کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
844951 908636 2006 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Existence of multiple weak solutions for asymptotically linear wave equations
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Existence of multiple weak solutions for asymptotically linear wave equations
چکیده انگلیسی

We consider the problem of multiple existence of 2π2π-periodic weak solutions to wave equations □u(x,t)=h(x,t,u(x,t))+f(x,t)□u(x,t)=h(x,t,u(x,t))+f(x,t) of space dimension 1, where h(x,t,ξ)h(x,t,ξ) is asymptotically linear in ξξ both as ξ→0ξ→0 and as |ξ|→∞|ξ|→∞. It is shown by variational methods that there exist at least three solutions under several conditions on h(x,t,ξ)h(x,t,ξ) if f is sufficiently small. One of the results   reads as follows. Let b≔lim|ξ|→∞∂h/∂ξ(x,t,ξ) and assume that the convergence is uniform with respect to (x,t)(x,t) and that b∉σ(□)b∉σ(□) (non-resonant case). Then the following conditions guarantee the existence of at least three solutions for sufficiently small f  : (a) h(x,t,ξ)-ξ∂h/∂ξ(x,t,0)h(x,t,ξ)-ξ∂h/∂ξ(x,t,0) is non-decreasing (resp. non-increasing) in ξξ, andsup(x,t,ξ)∂h∂ξ(x,t,ξ)max{λ∈σ(□);b>λ}.To obtain these results, we prove that a C1C1-class functional, which is bounded from above and satisfies a condition similar to the linking condition, has at least three critical points under (WPS)*(WPS)* condition.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 65, Issue 2, 15 July 2006, Pages 475–499
نویسندگان
,