کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
865033 1470842 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tackling Fluid Structures Complexity by the Jones Polynomial
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Tackling Fluid Structures Complexity by the Jones Polynomial
چکیده انگلیسی

By making simple, heuristic assumptions, a new method based on the derivation of the Jones polynomial invariant of knot theory to tackle and quantify structural complexity of vortex filaments in ideal fluids is presented. First, we show that the topology of a vortex tangle made by knots and links can be described by means of the Jones polynomial expressed in terms of kinetic helicity. Then, for the sake of illustration, explicit calculations of the Jones polynomial for the left-handed and right-handed trefoil knot and for the Whitehead link via the figure-of-eight knot are considered. The resulting polynomials are thus function of the topology of the knot type and vortex circulation and we provide several examples of those. While this heuristic approach extends the use of helicity in terms of linking numbers to the much richer context of knot polynomials, it gives also rise to new interesting problems in mathematical physics and it offers new tools to perform real-time numerical diagnostics of complex flows.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia IUTAM - Volume 7, 2013, Pages 175-182