کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
865400 909665 2010 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Investigation of Sparse Data Mouse Imaging Using Micro-CT with a Carbon-Nanotube-Based X-ray Source
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Investigation of Sparse Data Mouse Imaging Using Micro-CT with a Carbon-Nanotube-Based X-ray Source
چکیده انگلیسی
There has been a renewed interest in algorithm development for image reconstruction from highly incomplete data in computed tomography (CT). Such algorithms may lead to reduced imaging dose and time, and to the design of innovative configurations tailored to specific imaging tasks. In recent years, a carbon-nanotube (CNT)-based field-emission x-ray source has been developed, which offers easy electronic control of radiation and thus can be an ideal candidate for gated imaging. We have recently proposed algorithms for image reconstruction from fan-and cone-beam data collected at highly sparse angular views through minimization of the total-variation (TV) of the image subject to the condition that the estimated data are consistent with the measured data. In this work, we investigate and demonstrate the application of the TV-minimization algorithm to reconstructing images from mouse data acquired with a CNT-based CT scanner at a number of views much lower than what is used in conventional CT imaging. The results demonstrate that the TV-minimization algorithm can yield images with quality comparable to those obtained from a large number of views by use of the conventional algorithms. The significance of the work may lie in that the substantial reduction of projection views promised by the TV-minimization algorithm can be exploited for reducing imaging dose and time or for improving temporal resolution in tasks such as dynamic imaging.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Tsinghua Science & Technology - Volume 15, Issue 1, February 2010, Pages 74-78
نویسندگان
, , , , , , ,