کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
865673 909678 2008 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Advances in SVM-Based System Using GMM Super Vectors for Text-Independent Speaker Verification
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Advances in SVM-Based System Using GMM Super Vectors for Text-Independent Speaker Verification
چکیده انگلیسی
For text-independent speaker verification, the Gaussian mixture model (GMM) using a universal background model strategy and the GMM using support vector machines are the two most commonly used methodologies. Recently, a new SVM-based speaker verification method using GMM super vectors has been proposed. This paper describes the construction of a new speaker verification system and investigates the use of nuisance attribute projection and test normalization to further enhance performance. Experiments were conducted on the core test of the 2006 NIST speaker recognition evaluation corpus. The experimental results indicate that an SVM-based speaker verification system using GMM super vectors can achieve appealing performance. With the use of nuisance attribute projection and test normalization, the system performance can be significantly improved, with improvements in the equal error rate from 7.78% to 4.92% and detection cost function from 0.0376 to 0.0251.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Tsinghua Science & Technology - Volume 13, Issue 4, August 2008, Pages 522-527
نویسندگان
, , , , , ,