کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
865697 | 909679 | 2008 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multi-Dimensional Traffic Flow Time Series Analysis with Self-Organizing Maps
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The two important features of self-organizing maps (SOM), topological preservation and easy visualization, give it great potential for analyzing multi-dimensional time series, specifically traffic flow time series in an urban traffic network. This paper investigates the application of SOM in the representation and prediction of multi-dimensional traffic time series. First, SOMs are applied to cluster the time series and to project each multi-dimensional vector onto a two-dimensional SOM plane while preserving the topological relationships of the original data. Then, the easy visualization of the SOMs is utilized and several exploratory methods are used to investigate the physical meaning of the clusters as well as how the traffic flow vectors evolve with time. Finally, the k-nearest neighbor (kNN) algorithm is applied to the clustering result to perform short-term predictions of the traffic flow vectors. Analysis of real world traffic data shows the effectiveness of these methods for traffic flow predictions, for they can capture the nonlinear information of traffic flows data and predict traffic flows on multiple links simultaneously.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Tsinghua Science & Technology - Volume 13, Issue 2, April 2008, Pages 220-228
Journal: Tsinghua Science & Technology - Volume 13, Issue 2, April 2008, Pages 220-228
نویسندگان
Yudong (éç
ä¸), Yi (å¼ æ¯
), Jianming (è¡åæ),