کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
865953 | 909690 | 2007 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Soft Fault Diagnosis for Analog Circuits Based on Slope Fault Feature and BP Neural Networks
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Fault diagnosis is very important for development and maintenance of safe and reliable electronic circuits and systems. This paper describes an approach of soft fault diagnosis for analog circuits based on slope fault feature and back propagation neural networks (BPNN). The reported approach uses the voltage relation function between two nodes as fault features; and for linear analog circuits, the voltage relation function is a linear function, thus the slope is invariant as fault feature. Therefore, a unified fault feature for both hard fault (open or short fault) and soft fault (parametric fault) is extracted. Unlike other NN-based diagnosis methods which utilize node voltages or frequency response as fault features, the reported BPNN is trained by the extracted feature vectors, the slope features are calculated by just simulating once for each component, and the trained BPNN can achieve all the soft faults diagnosis of the component. Experiments show that our approach is promising.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Tsinghua Science & Technology - Volume 12, Supplement 1, July 2007, Pages 26-31
Journal: Tsinghua Science & Technology - Volume 12, Supplement 1, July 2007, Pages 26-31
نویسندگان
Hu (è¡ æ¢
), Wang (ç 红), Hu (è¡ åº), Yang (æ¨å£«å
),