کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8900557 1631717 2018 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
D-convergence and conditional GDN-stability of exponential Runge-Kutta methods for semilinear delay differential equations
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
D-convergence and conditional GDN-stability of exponential Runge-Kutta methods for semilinear delay differential equations
چکیده انگلیسی
This paper is concerned with exponential Runge-Kutta methods with Lagrangian interpolation (ERKLMs) for semilinear delay differential equations (DDEs). Concepts of exponential algebraic stability and conditional GDN-stability are introduced. D-convergence and conditional GDN-stability of ERKLMs for semilinear DDEs are investigated. It is shown that exponentially algebraically stable and diagonally stable ERKLMs with stage order p, together with a Lagrangian interpolation of order q (q ≥ p), are D-convergent of order p. It is also shown that exponentially algebraically stable and diagonally stable ERKLMs are conditionally GDN-stable. Some examples of exponentially algebraically stable and diagonally stable ERKLMs of stage order one and two are given, and numerical experiments are presented to illustrate the theoretical results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 339, 15 December 2018, Pages 45-58
نویسندگان
, , ,