کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8901081 | 1631727 | 2018 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Clar structures vs Fries structures in hexagonal systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A hexagonal system H is a 2-connected bipartite plane graph such that all inner faces are hexagons, which is often used to model the structure of a benzenoid hydrocarbon or graphen. A perfect matching of H is a set of disjoint edges which covers all vertices of H. A resonant set S of H is a set of hexagons in which every hexagon is M-alternating for some perfect matching M. The Fries number of H is the size of a maximum resonant set and the Clar number of H is the size of a maximum independent resonant set (i.e. all hexagons are disjoint). A pair of hexagonal systems with the same number of vertices is called a contra-pair if one has a larger Clar number but the other has a larger Fries number. In this paper, we investigates the Fries number and Clar number for hexagonal systems, and show that a catacondensed hexagonal system has a maximum resonant set containing a maximum independent resonant set, which is conjectured for all hexagonal systems. Further, our computation results demonstrate that there exist many contra-pairs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 329, 15 July 2018, Pages 384-394
Journal: Applied Mathematics and Computation - Volume 329, 15 July 2018, Pages 384-394
نویسندگان
Shaohui Zhai, Dalal Alrowaili, Dong Ye,