کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8901082 | 1631728 | 2018 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A priori and a posteriori error estimates of H1-Galerkin mixed finite element methods for optimal control problems governed by pseudo-hyperbolic integro-differential equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we investigate a priori and a posteriori error estimates of H1-Galerkin mixed finite element methods for optimal control problems governed by pseudo-hyperbolic integro-differential equations. The state variables and co-state variables are approximated by the lowest order Raviart-Thomas mixed finite element and linear finite element, and the control variable is approximated by piecewise constant functions. Based on two new elliptic projections, we derive a priori error estimates both for the control variable, the state variable and the co-state variable. The related a priori error estimates for the new projections error are also established. Moreover, a posteriori error estimates for all variables are derived via energy method. Such a posteriori error estimates, which are apparently not available in the literature, are an important step towards developing reliable adaptive mixed finite element approximation schemes for the control problem.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 328, 1 July 2018, Pages 100-112
Journal: Applied Mathematics and Computation - Volume 328, 1 July 2018, Pages 100-112
نویسندگان
Hongbo Chen, Tianliang Hou,