کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8901214 | 1631732 | 2018 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Reduced difference polynomials and self-intersection computations
ترجمه فارسی عنوان
چند جمله ای های مختلف و محاسبات خود تقاطع کاهش یافته است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
چکیده انگلیسی
A reduced difference polynomialf(u,v)=(p(u)âp(v))/(uâv) may be associated with any given univariate polynomial p(t), tâ¯ââ¯[â0, 1â] such that the locus f(u,v)=0 identifies the pairs of distinct values u and v satisfying p(u)=p(v). The Bernstein coefficients of f(u, v) on [â0, 1â]2 can be determined from those of p(t) through a simple algorithm, and can be restricted to any subdomain of [â0, 1â]2 by standard subdivision methods. By constructing the reduced difference polynomials f(u, v) and g(u, v) associated with the coordinate components of a polynomial curve r(t)=(x(t),y(t)), a quadtree decomposition of [â0, 1â]2 guided by the variation-diminishing property yields a numerically stable scheme for isolating real solutions of the system f(u,v)=g(u,v)=0, which identify self-intersections of the curve r(t). Through the Kantorovich theorem for guaranteed convergence of Newton-Raphson iterations to a unique solution, the self-intersections can be efficiently computed to machine precision. By generalizing the reduced difference polynomial to encompass products of univariate polynomials, the method can be readily extended to compute the self-intersections of rational curves, and of the rational offsets to Pythagorean-hodograph curves.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 324, 1 May 2018, Pages 174-190
Journal: Applied Mathematics and Computation - Volume 324, 1 May 2018, Pages 174-190
نویسندگان
Rida T. Farouki,