کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8901545 | 1631738 | 2018 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Energy-conserving methods for the nonlinear Schrödinger equation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we further develop recent results in the numerical solution of Hamiltonian partial differential equations (PDEs) (Brugnano et al., 2015), by means of energy-conserving methods in the class of Line Integral Methods, in particular, the Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). We shall use HBVMs for solving the nonlinear Schrödinger equation (NLSE), of interest in many applications. We show that the use of energy-conserving methods, able to conserve a discrete counterpart of the Hamiltonian functional, confers more robustness on the numerical solution of such a problem.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 318, 1 February 2018, Pages 3-18
Journal: Applied Mathematics and Computation - Volume 318, 1 February 2018, Pages 3-18
نویسندگان
L. Barletti, L. Brugnano, G. Frasca Caccia, F. Iavernaro,