کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8903579 1632746 2018 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Combinatorial proofs of some properties of tangent and Genocchi numbers
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Combinatorial proofs of some properties of tangent and Genocchi numbers
چکیده انگلیسی
The tangent number T2n+1 is equal to the number of increasing labelled complete binary trees with 2n+1 vertices. This combinatorial interpretation immediately proves that T2n+1 is divisible by 2n. However, a stronger divisibility property is known in the studies of Bernoulli and Genocchi numbers, namely, the divisibility of (n+1)T2n+1 by 22n. The traditional proofs of this fact need significant calculations. In the present paper, we provide a combinatorial proof of the latter divisibility by using the hook length formula for trees. Furthermore, our method is extended to k-ary trees, leading to a new generalization of the Genocchi numbers.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 71, June 2018, Pages 99-110
نویسندگان
, ,