کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8903589 | 1632746 | 2018 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new lower bound for the chromatic number of general Kneser hypergraphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A general Kneser hypergraph KGr(H) is an r-uniform hypergraph that somehow encodes the edge intersections of a ground hypergraph H. The colorability defect of H is a combinatorial parameter providing a lower bound for the chromatic number of KGr(H), which is addressed in a series of works by Dol'nikov (1988), KÅÞ (1992) and Ziegler (2002). In this paper, we define a new combinatorial parameter, the equitable colorability defect of hypergraphs, which provides some common improvements upon these works. Roughly speaking, we propose a new lower bound for the chromatic number of general Kneser hypergraphs which substantially improves Ziegler's lower bound. It is always as good as Ziegler's lower bound and several families of hypergraphs for which the difference between these two lower bounds is arbitrary large are provided. This specializes to a substantial improvement of the Dol'nikov-KÅÞ lower bound for the chromatic number of general Kneser hypergraphs as well. Furthermore, we prove a result ensuring the existence of a colorful subhypergraph in any proper coloring of general Kneser hypergraphs that strengthens Meunier's result (Meunier, 2014).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 71, June 2018, Pages 229-245
Journal: European Journal of Combinatorics - Volume 71, June 2018, Pages 229-245
نویسندگان
Roya Abyazi Sani, Meysam Alishahi,