کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8903626 1632748 2018 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bijections for Weyl Chamber walks ending on an axis, using arc diagrams and Schnyder woods
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Bijections for Weyl Chamber walks ending on an axis, using arc diagrams and Schnyder woods
چکیده انگلیسی
In the study of lattice walks there are several examples of enumerative equivalences which amount to a trade-off between domain and endpoint constraints. We present a family of such bijections for simple walks in Weyl chambers which use arc diagrams in a natural way. One consequence is a set of new bijections for standard Young tableaux of bounded height. A modification of the argument in two dimensions yields a bijection between Baxter permutations and walks ending on an axis, answering a recent question of Burrill et al. (2016). Some of our arguments (and related results) are proved using Schnyder woods. Our strategy for simple walks extends to any dimension and yields a new bijective connection between standard Young tableaux of height at most 2k and certain walks with prescribed endpoints in the k-dimensional Weyl chamber of type D.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 69, March 2018, Pages 126-142
نویسندگان
, , , ,