کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8903626 | 1632748 | 2018 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bijections for Weyl Chamber walks ending on an axis, using arc diagrams and Schnyder woods
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In the study of lattice walks there are several examples of enumerative equivalences which amount to a trade-off between domain and endpoint constraints. We present a family of such bijections for simple walks in Weyl chambers which use arc diagrams in a natural way. One consequence is a set of new bijections for standard Young tableaux of bounded height. A modification of the argument in two dimensions yields a bijection between Baxter permutations and walks ending on an axis, answering a recent question of Burrill et al. (2016). Some of our arguments (and related results) are proved using Schnyder woods. Our strategy for simple walks extends to any dimension and yields a new bijective connection between standard Young tableaux of height at most 2k and certain walks with prescribed endpoints in the k-dimensional Weyl chamber of type D.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 69, March 2018, Pages 126-142
Journal: European Journal of Combinatorics - Volume 69, March 2018, Pages 126-142
نویسندگان
Julien Courtiel, Eric Fusy, Mathias Lepoutre, Marni Mishna,