کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8904420 1633702 2018 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Convergence of hybrid viscosity and steepest-descent methods for pseudocontractive mappings and nonlinear Hammerstein equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Convergence of hybrid viscosity and steepest-descent methods for pseudocontractive mappings and nonlinear Hammerstein equations
چکیده انگلیسی
In this article, we first introduce an iterative method based on the hybrid viscosity approximation method and the hybrid steepest-descent method for finding a fixed point of a Lipschitz pseudocontractive mapping (assuming existence) and prove that our proposed scheme has strong convergence under some mild conditions imposed on algorithm parameters in real Hilbert spaces. Next, we introduce a new iterative method for a solution of a nonlinear integral equation of Hammerstein type and obtain strong convergence in real Hilbert spaces. Our results presented in this article generalize and extend the corresponding results on Lipschitz pseudocontractive mapping and nonlinear integral equation of Hammerstein type reported by some authors recently. We compare our iterative scheme numerically with other iterative scheme for solving non-linear integral equation of Hammerstein type to verify the efficiency and implementation of our new method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Mathematica Scientia - Volume 38, Issue 2, March 2018, Pages 610-626
نویسندگان
, ,