| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 8904949 | 1633760 | 2018 | 54 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												New and old results on spherical varieties via moduli theory
												
											ترجمه فارسی عنوان
													نتایج جدید و قدیمی بر روی انواع کروی از طریق نظریه ماژول
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													ریاضیات (عمومی)
												
											چکیده انگلیسی
												Given a connected reductive algebraic group G and a finitely generated monoid Î of dominant weights of G, in 2005 Alexeev and Brion constructed a moduli scheme MÎ for multiplicity-free affine G-varieties with weight monoid Î. This scheme is equipped with an action of an 'adjoint torus' Tad and has a distinguished Tad-fixed point X0. In this paper, we obtain a complete description of the Tad-module structure in the tangent space of MÎ at X0 for the case where Î is saturated. Using this description, we prove that the root monoid of any affine spherical G-variety is free. As another application, we obtain new proofs of uniqueness results for affine spherical varieties and spherical homogeneous spaces first proved by Losev in 2009. Furthermore, we obtain a new proof of Alexeev and Brion's finiteness result for multiplicity-free affine G-varieties with a prescribed weight monoid. At last, we prove that for saturated Î all the irreducible components of MÎ, equipped with their reduced subscheme structure, are affine spaces.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 328, 13 April 2018, Pages 1299-1352
											Journal: Advances in Mathematics - Volume 328, 13 April 2018, Pages 1299-1352
نویسندگان
												Roman Avdeev, Stéphanie Cupit-Foutou, 
											