کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8906098 | 1634013 | 2018 | 55 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Lewis meets Brouwer: Constructive strict implication
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
C.I. Lewis invented modern modal logic as a theory of “strict implication” ⥽. Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than â¡ and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the “strength” axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction has been discovered by the functional programming community in their study of “arrows” as contrasted with “idioms”. Our particular focus is on arithmetical interpretations of intuitionistic ⥽ in terms of preservativity in extensions of HA, i.e., Heyting's Arithmetic.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Indagationes Mathematicae - Volume 29, Issue 1, February 2018, Pages 36-90
Journal: Indagationes Mathematicae - Volume 29, Issue 1, February 2018, Pages 36-90
نویسندگان
Tadeusz Litak, Albert Visser,