کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9506662 | 1340755 | 2005 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new norm-relaxed method of strongly sub-feasible direction for inequality constrained optimization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Combining the norm-relaxed method of feasible direction (MFD) with the idea of strongly sub-feasible direction method, we present a new convergent algorithm with arbitrary initial point for inequality constrained optimization. At each iteration, the new algorithm solves one direction finding subproblem (DFS) which always possesses a solution. Some good properties of the new algorithm are that it can unify automatically the operations of initialization (Phase I) and optimization (Phase II) and the number of the functions satisfying the inequality constrains is nondecreasing, particularly, a feasible direction of descent can be obtained by solving DFS whenever the iteration point gets into the feasible set. Under some mild assumptions without the linear independence, the global and strong convergence of the algorithm can be obtained.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 168, Issue 1, 1 September 2005, Pages 1-28
Journal: Applied Mathematics and Computation - Volume 168, Issue 1, 1 September 2005, Pages 1-28
نویسندگان
Jinbao Jian, Haiyan Zheng, Qingjie Hu, Chunming Tang,