کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9506714 1340755 2005 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A deterministic global optimization algorithm for generalized geometric programming
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
A deterministic global optimization algorithm for generalized geometric programming
چکیده انگلیسی
A deterministic global optimization algorithm is proposed for generalized geometric programming (GGP). By utilizing some transformations, the initial non-convex problem is reduced to a reverse convex programming (RCP), where the objective function and constraint functions are convex. Then a linear relaxation of the problem (RCP) is obtained based on the linear lower bounding functions of the convex constraint functions and the linear upper bounding functions of the reverse convex constraint functions inside some hyperrectangle region. A cutting-plane method is proposed to add some effective linear constraints to the linear relaxation programming based on the famous arithmetic-geometric mean inequality, then derive a tighter linear relaxation programming. The proposed global optimization algorithm which connects the branch and bound method with the cutting-plane method successfully is convergent to the global minimum through the successive refinement of the linear relaxation of the feasible region of the objective function and the solutions of a series of linear relaxation problems. And finally the numerical experiment is given to illustrate the feasibility and the robust stability of the present algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 168, Issue 1, 1 September 2005, Pages 722-737
نویسندگان
, ,