کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9506839 1340760 2005 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bivariate polynomial interpolation on the square at new nodal sets
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Bivariate polynomial interpolation on the square at new nodal sets
چکیده انگلیسی
As known, the problem of choosing “good” nodes is a central one in polynomial interpolation. While the problem is essentially solved in one dimension (all good nodal sequences are asymptotically equidistributed with respect to the arc-cosine metric), in several variables it still represents a substantially open question. In this work we consider new nodal sets for bivariate polynomial interpolation on the square. First, we consider fast Leja points for tensor-product interpolation. On the other hand, for interpolation in Pn2 on the square we experiment four families of points which are (asymptotically) equidistributed with respect to the Dubiner metric, which extends to higher dimension the arc-cosine metric. One of them, nicknamed Padua points, gives numerically a Lebesgue constant growing like log square of the degree.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 165, Issue 2, 15 June 2005, Pages 261-274
نویسندگان
, , ,