کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9506905 | 1340763 | 2005 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new partitioning neural network model for recursively finding arbitrary roots of higher order arbitrary polynomials
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A new partitioning feedforward neural network (FNN) root-finder model for recursively finding the arbitrary (including complex) roots of higher order arbitrary polynomials is proposed in this paper. Moreover, an efficient complex version of constrained learning algorithm (CLA), which incorporates the a priori information, i.e., the constrained relation between the original polynomial coefficients and the remaining polynomial coefficients plus the partitioned roots out from the original polynomial, is constructed to train the corresponding partitioning neural root-finder network for finding the arbitrary roots of arbitrary polynomials. Finally, the experimental results are given to show the efficiency and effectiveness of our proposed neural model with respect to traditional non-neural root-finders.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 162, Issue 3, 25 March 2005, Pages 1183-1200
Journal: Applied Mathematics and Computation - Volume 162, Issue 3, 25 March 2005, Pages 1183-1200
نویسندگان
De-Shuang Huang, H.S.Ip Horace, C.K. Law Ken, Zheru Chi, H.S. Wong,