کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9506990 | 1340765 | 2005 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A ranked linear assignment approach to Bayesian classification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We derive the averaged permutation matrix representation over Sn, given the mean of M data vector samples. This matrix turns out to be a doubly stochastic matrix,PM, whose (i,j) element is the probability that data stream component i corresponds to class j, given the sample mean vector XM. We prove that PM converges to Ï in probability. Moreover, it is shown that PM can be accurately approximated by extending from the solution of the classical linear assignment problem of finding the permutation with maximum likelihood to the solution of the ranked linear assignment problem in which a small number of permutations with rapidly decreasing likelihoods are identified.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 162, Issue 1, 4 March 2005, Pages 265-281
Journal: Applied Mathematics and Computation - Volume 162, Issue 1, 4 March 2005, Pages 265-281
نویسندگان
Roy Danchick,